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Abstract  High-frequency monitoring of water qual-
ity in catchments brings along the challenge of post-
processing large amounts of data. Moreover, moni-
toring stations are often remote and technical issues 
resulting in data gaps are common. Machine learning 
algorithms can be applied to fill these gaps, and to a 
certain extent, for predictions and interpretation. The 
objectives of this study were (1) to evaluate six differ-
ent machine learning models for gap-filling in a high-
frequency nitrate and total phosphorus concentration 
time series, (2) to showcase the potential added value 
(and limitations) of machine learning to interpret 
underlying processes, and (3) to study the limits of 
machine learning algorithms for predictions outside 
the training period. We used a 4-year high-frequency 
dataset from a ditch draining one intensive dairy farm 
in the east of The Netherlands. Continuous time series 

of precipitation, evapotranspiration, groundwater 
levels, discharge, turbidity, and nitrate or total phos-
phorus were used as predictors for total phosphorus 
and nitrate concentrations respectively. Our results 
showed that the random forest algorithm had the best 
performance to fill in data-gaps, with R2 higher than 
0.92 and short computation times. The feature impor-
tance helped understanding the changes in transport 
processes linked to water conservation measures and 
rain variability. Applying the machine learning model 
outside the training period resulted in a low perfor-
mance, largely due to system changes (manure sur-
plus and water conservation) which were not included 
as predictors. This study offers a valuable and novel 
example of how to use and interpret machine learn-
ing models for post-processing high-frequency water 
quality data.
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R2	� Coefficient of determination
RF	� Random forest
RMSE	� Root mean square error
SMO	� Sequential minimal optimization
TP	� Total phosphorus
ZR	� Zero Rules

Introduction

Intensive agriculture is an important source of nutri-
ents in surface waters (Bol et  al.,  2018; Van der 
Grift et  al.,  2016; Van der Salm et  al.,  2012; Withers 
et al., 2014). High total phosphorus (TP) or high nitrate 
(NO3) concentrations are two of the parameters that can 
lead to a poor ecological quality status in surface waters. 
High NO3 and TP concentrations are being pointed out 
as one of the main causes of biodiversity loss (Dise 
et  al.,  2011; Porter et  al.,  2013) and algae blooms  
(Withers & Haygarth, 2007). In many cases, the nutri-
ents lost to surface water do not just originate from the 
freshly applied manure or fertilizer, but from the nutrient 
legacy accumulated in the soil which is transported into 
surface waters through natural of artificial drainage sys-
tems (Bieroza et al., 2019; Lucas et al., 2021; Sharpley 
et al., 2013). Realistic goals and appropriate mitigation 
measures are needed (Schoumans et  al., 2014). There-
fore, it is central for the water authorities to monitor the 
water quality of surface waters and quantify the effect 
that nutrient sources and system changes have in the 
transport processes and leaching of nutrients into larger 
water systems.

High-frequency monitoring of water quality data 
offers a detailed understanding of the processes 
involved in nutrient transport (Rode et  al.,  2016; 
Rozemeijer et  al.,  2010a, b). However, technicians 
often face the challenge to deal with large data vol-
umes and missing data (Zhang et al., 2019). It is often 
the case that sensors and autoanalyzers have techni-
cal problems which can result in a significant number 
of gaps in the data. The post processing of the data, 
including identification of errors and filling missing 
values can be time consuming and the final result 
depends on the individual who does the post process-
ing (Jones et al., 2021). Furthermore, the amount of 
data collected by high-frequency sensors can easily 
exceed the amount of data that can be treated manu-
ally (Dupas et  al.,  2015; Kirchner & Neal,  2013). 
Nevertheless, without complete data series, it is not 

possible to accurately calculate total annual loads and 
the value of high-frequency monitoring is reduced to 
the observation of specific events that might not be 
representative of the overall system’s response.

Machine learning algorithms build models based 
on sample (training) data in order to make numerical 
predictions (regression models) or categorical predic-
tions (classification models). Machine learning algo-
rithms, such as trees, rules, support vector machines, 
and artificial neural networks, offer an advantage 
to linear methods when treating nonlinear prob-
lems such as concentration-discharge relationships. 
Although machine learning algorithms are powerful 
tools to post-process high-frequency water quality 
data, their use is still below their potential in many 
fields of environmental sciences (Liu et  al.,  2022). 
The relative low acceptance of machine learning in 
some environmental sciences may lie in reluctance to 
shift from a process-based approach to a data-based 
approach and the tradeoff between interpretability, 
performance, and complexity (Liu et al., 2022; Visser 
et al., 2022). Gap-filling of continuous water quality 
datasets is a so far unexplored, yet potentially power-
ful application of machine learning. Machine learning 
algorithms have been successfully applied for gap-
filling in medical datasets (Shah et  al.,  2014), eddy-
covariance evapotranspiration and CO2 flux data sets 
(Kang et al., 2019), soil moisture (Mao et al., 2019) 
and more recently also for daily streamflow time 
series (Arriagada et  al.,  2021). Most water quality 
applications of machine learning focus on predicting 
nutrient concentrations from catchment characteris-
tics (e.g., Castrillo & García, 2020; Chen et al., 2020; 
Olson & Hawkins, 2012) or from other chemical 
parameters measured in conventional monitoring net-
works (e.g. Ha et al., 2020; Visser et al., 2022). Nev-
ertheless, most of these studies focus on the forecast-
ing performance and do not explore the limitations 
of using predictive data-based models (Tyralis & 
Papacharalampous, 2019).

The objectives of this study were as follows: (i) 
to evaluate six different machine learning models 
for gap-filling in a high-frequency NO3 and TP con-
centration time series, (ii) to showcase the potential 
added value and limitations of machine learning to 
interpret underlying nutrient transport processes, and 
(iii) to study the limits of machine learning algorithms 
for making predictions outside the training period. As 
case study, we used 4  years of high-frequency data 
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from a ditch draining one dairy farm in the east of 
The Netherlands where the nutrient transport from 
the soil to the surface water were previously investi-
gated (Barcala et al., 2020). We applied open source 
and popular data-science software such as WEKA 
(Frank et al., 2017) and R (R Core Team, 2020) for 
the data post-processing and model implementation. 
This study offers a valuable and novel example of 
how to use and interpret machine learning models for 
post-processing high-frequency water quality data.

Materials and methods

Field site and time series description

The data was collected from a dairy farm near Win-
terswijk, the Netherlands (52.00131 N, 6.76112 
E). The nutrient routes from the soil to the sur-
face water were previously studied by Barcala et  al. 
(2020). Manure is applied in the fields for fertiliza-
tion between March and August. After measuring the 
crop productivity, the annual soil nutrient surpluses 
are calculated by the farmer. The topsoil is high in 
organic matter and has a 0.26 phosphorus satura-
tion degree, meaning it can hardly retain more P. 
The water extractable P content (Pw) was on aver-
age 11.2  mg/kg in the topsoil, 1.5  mg/l just below 
the tillage zone (40–50 cm depth), and 0.1 mg/kg at 
70–80 cm depth (Barcala et al., 2020). The average P 
in the topsoil is 2.630 kg/ha and the N in the topsoil 
is 565 kg/ha (Barcala et al., 2020). Below the topsoil, 
there is a Fe- and Al-rich sand layer. The farm is arti-
ficially drained by a main ditch that collects the water 
of the whole farm and runs parallel to the road in 
front of the farm. A secondary ditch runs perpendicu-
lar to the main ditch into the fields behind the farm-
yard. The northeast part of the fields has subsurface 
drainpipes draining into the most upstream part of 
the main ditch. The terrain is flat and surface runoff 
only occasionally contributed to the ditch discharge. 
Therefore, nutrients are transported mainly from the 
soil to the main ditch via lateral groundwater flow 
and the tile drains. During the summer months, the 
groundwater level falls below the ditch level and the 
main ditch falls dry. During this study, farmers were 
particularly affected by the extreme drought of 2018. 
Water shortage is a stress factor for crop growth and 
climate change is causing greater rainfall variability 

(Greve et  al.,  2021; Masson-Delmotte et  al.,  2021). 
To adapt against droughts, the farmer implemented 
different water conservation measures to control the 
groundwater level in the field before the start of the 
last drainage season. An adjustable weir was placed 
in the main ditch in front of the farm, and an adjust-
able pipe was installed in the side ditch behind the 
farmyard (Fig. 1).

At the end of the main ditch, we installed a v-notch 
weir and a high-frequency monitoring station was 
operative from 17 February 2018 to 7 June 2021. 
Every 15  min, TP (Phosphax Sigma autoanalyzer, 
Hach), turbidity (Solitax Sensor, Hach), and NO3 
(Nitratax Sensor, Hach) were measured. About 80% 
of the total-N was in the form of NO3 in exploratory 
laboratory analysis. Furthermore, every 15  min, the 
discharge from the v-notch weir was calculated using 
a pressure gauge upstream from the weir and ground-
water levels at the farm were monitored with a pres-
sure gauge installed in a groundwater piezometer. As 
meteorological data may contribute to the prediction 
of the missing values, hourly rainfall and daily evapo-
transpiration data were downloaded from a meteoro-
logical station 12  km from the farm that belongs to 
the Dutch Royal Meteorological Institute Network 
(https://​www.​knmi.​nl/​neder​land-​nu/​klima​tolog​ie, 
station 283). The hourly rain, and daily grass refer-
ence evapotranspiration, were linearly interpolated 
to have one value every 15 min using the approxfun 
function in R. All the times were taken to Dutch win-
tertime (GMT + 1). Time lags may vary depending 
on pre-event conditions such as groundwater levels, 
soil moisture, the location of the source (soil vs ditch 
sediment) and the magnitude of the event. Time lags 
were not included in the calculations but were esti-
mated to be under 3 h. All the time series were qual-
ity checked, discharge measurements were checked 
based on manual measurements, and concentrations 
measurements were controlled based on laboratory 
measurements taken on routine visits every approxi-
mately 4 weeks. More detailed information about the 
field site characteristics and the high-frequency moni-
toring station can be found in Barcala et al. (2020).

Using the 2017–2018 values as a reference, the 
groundwater levels were on average 25  cm higher 
in 2020–2021 when the farmer implemented water 
retention measures (Table  S1). In the year 2018 
(2017–2018 season), TP correlated with turbidity 
(0.70) and NO3 correlated strongly with discharge 

https://www.knmi.nl/nederland-nu/klimatologie
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and groundwater level (0.91, 0.86) as was already 
discussed in Barcala et  al. (2020). However, these 
correlations became weaker in the following years, 
especially between TP and turbidity (Fig. S2). NO3 
concentrations showed a similar temporal pattern 
to the groundwater levels but were shortly diluted 
during rain events (Figs. 3 and S3). Before starting 
with the selection of the machine learning models, 
we did some basic exploration of the available data 
available in the supplementary material. The N and 
P application to the fields are limited by the national 
Action Plans for the EU Nitrate Directive (Schroder 
et al., 2007). The manure applied targets at a 0 kg/
ha P surplus. However, the crop growth can be lim-
ited by the water availability; in years with low rain-
fall less P was taken up, which resulted in a positive 
surplus. The average yearly N surplus was 142 kg/
ha N, which falls just below the national average 
(160  kg/ha). Table  1 gives a quantitative summary 
of the drainage seasons.

Data analysis

To calculate and compare accurate annual nutrient 
loads leaving the catchment, we needed to fill the miss-
ing NO3 and TP values of the high-frequency dataset. 
Table  1 shows the duration of each drainage season 
and the percentage of NO3 and TP missing data. To 
fill in missing data, we evaluated six machine learning 
algorithms and compared them to filling in the gaps 
with the mean. The measured data was split and 60% 
was used for training (calibration) and 40% for testing 
(validation). The data was randomly split three times 
to improve the statistical representation and robust-
ness of the results by using three different seeds. Seeds 
ensure that the results are reproducible, dividing the 
data in the same way each time. We opted for a wide 
pre-selection of machine learning algorithms because 
one cannot know beforehand which will perform best 
for a specific problem. The performance depends on 
the available dataset and the defined problem, in our 

Fig. 1   Farm layout (dashed red line) with water conservation measures implemented for the 2020–2121 season
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case the accuracy in filling missing data in high-fre-
quency nutrient concentration time series. The Wai-
kato Environment for Knowledge Analysis (WEKA) 
was used to preprocess the data and for evaluation of 
all Machine Learning models. WEKA is open soft-
ware widely used for data mining programmed in 
Java (Frank et al., 2017). If it is not stated otherwise, 
the default parameter settings in WEKA were used. R 
studio (R Core Team, 2020) was used for data visu-
alization and pre- and post-processing of the data. Six 
algorithms were pre-selected following the criteria that 
they were well documented and accepted, able to pre-
dict a numeric class (regression), and capable of han-
dling missing data.

The pre-selected algorithms use different principles 
in order to build the models. Zero Rules (ZR) predicts 
the mean of the numeric class, it is used as a benchmark 
to determine if other algorithms perform better than 
filling the missing values with the mean. Multivari-
ate linear regression (MLR) finds the best fit for a line 
between multiple independent variables and the output 
is an explicit equation. Sequential minimal optimization 

regression (SMO) is similar to a support vector machine 
but can solve regression problems. SMO solves ana-
lytically the smallest possible optimization problem at 
every step using two Lagrange multipliers that obey a 
linear equality constraint (Platt, 2008). K-nearest neigh-
bor (kNN), also called instance-based learner, generates 
a prediction by first finding k instances in the training 
dataset which are closest to the value that we want to 
predict (Aha et al., 1991). K was set to 1 and we used 
the Euclidean distance. M5 Rules (M5R) combines 
rules with trees, it generates list of rules for regression 
problems using the “separate-and-conquer” strategy, in 
each iteration a tree is built, and the “best” leaf is made 
into a rule (Leman, 1997). Random forest (RF) grows 
an ensemble of trees and takes the average of the trees 
for the regression problem (Breiman, 2001), 100 trees 
were grown to maximal depth. Artificial neural net-
works (ANNs) are networks of linear classifiers (per-
ceptrons), they implement a weighted decision given 
two hidden layers, we used 7 nodes or “neurons” in the 
hidden layer as this was equal to the number of nodes in 
the input layer (Wolpert, 1992).

Table 1   Summary of the nutrient surplus, first and last day of drainage, seasonal rainfall, evapotranspiration, and discharge

* To use as a reference for the average concentration, the Water Framework Directive target for surface waters is 2.3 mg/L for TN and 
0.11 mg/L for TP (average summer concentrations)

All seasons 2017–2018 2018–2019 2019–2020 2020–2021

Nutrient surplus
N surplus (kg/ha) 568 126 209 167 66
P surplus (kg/ha) 0 2 4 16  − 22
Drainage season characteristics
First day drainage season dd-mm-yy 17/02/18 17/02/18 23/12/18 18/10/19 1/12/20
Last day drainage season dd-mm-yy 7/06/21 8/05/18 16/04/19 20/04/20 7/06/21
Rain Total (mm) 1121 105 221 379 416
Evapotranspiration Total (mm) 380 86 58 94 142
Rain–evap Total (mm) 741 19 163 285 275
Discharge Total (m3) 178,768 20,361 31,773 64,727 61,908
Data gaps
Turbidity sensor % Missing 5.9% 24.6% 1.8% 4.8% 1.6%
NO3 sensor % Missing 5.6% 25.4% 1.5% 3.4% 1.9%
TP autoanalyzer % Missing 33% 57% 34% 22% 34%
Number of instances N 54,912 7776 11,040 17,952 18,144
Averages*
Turbidity (NTU) 9.40 2.06 14.1 4.89 13.4
Groundwater levels (m)  − 1.28  − 0.989  − 0.916  − 0.858  − 0.769
NO3 (mg/L) 9.52 4.91 9.97 12.7 7.77
TP (mg/L) 0.050 0.010 0.035 0.045 0.077
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To build the TP and NO3 models, we used time 
series of precipitation, evapotranspiration, groundwa-
ter levels, discharge, turbidity, and NO3 or TP, respec-
tively. Seasonal changes as the manure surplus and 
the implementation of water retention measures are 
not included as predictors. To evaluate and select the 
best model, we used the coefficient of determination 
(R2), the mean absolute error (MAE), and the root 
mean square error (RMSE) between the measured 
and the predicted values of the test subset. The mod-
els were done for each drainage season (2017–2018, 
2018–2019, 2019–2020, 2020–2021) and for all 
the seasons together (2017–2021). The seasons are 
defined as the time during the year when there is 
water discharge in the ditch. Separate models were 
preferred to one single model to evaluate the model 
response to different yearly features that are not con-
sidered as predictors, such as year-to-year variations 
in total rainfall, nutrient surpluses, and the imple-
mentation of water conservation measures in the 
2020–2021 drainage season.

To study the performance of predicting nutrient 
concentrations we evaluated two scenarios. First, the 
2018–2019 model was used to predict the 2019–2020 
measurements, and second, the 2019–2020 model 
was used to predict the 2020–2021 measurements. 
Both predictions used the input variables (rain, evap-
otranspiration, groundwater, discharge, turbidity, and 
NO3 or TP) of the season we wanted to predict. The 
first scenario represents the prediction with no sys-
tem changes and the second represents the prediction 
with changes (water retention measures). This way 
we evaluate if the model can predict system changes 
outside the training window. Both predictions were 
also done with the all seasons’ (2017–2021) model 
to assess if the model could represent system changes 
inside the training window. Although the retention 
measures are not incorporated into the model, the 
groundwater levels measured were and they were 
higher on the last season.

The feature importance (also called permuta-
tion variable importance metrics) allows to weight 
the influence of each input variable in the predic-
tion, improving the interpretability of the results. 
The feature importance is calculated as the percen-
tual increase in predictive error of not including one 
variable as compared to the out-of-bag rate with all 
other variables intact (Breiman, 2001). The feature 

importance was used to interpret which variables are 
most relevant for the prediction outcomes. An extra 
random variable was included in the feature impor-
tance calculations as a benchmark. If any variable 
was equally or less important than the random vari-
able, then it would not contribute for the prediction. 
The importance values are related to the output mag-
nitude of the predicted variable; therefore, the fea-
ture importance was normalized to 1 to facilitate the 
comparison. Without this normalization step, the NO3 
predictors would have a higher feature importance 
values than those for TP. The 2017–2018 season is 
only used for gap filling and not for future predic-
tions or for variable feature importance calculations 
because it is not a full drainage season (it starts in half 
February). Lastly, after filling the missing data with 
the best performing model, the total loads of NO3 and 
TP were calculated for each season by multiplying the 
concentrations by the discharge. Total loads were also 
calculated for the predictive models.

Results

Filling in missing data

The TP autoanalyzer had a larger amount of missing 
data, grouped in 2 to 4 large gaps per season. Besides 
2018, the amount values missing from the NO3 sensor 
were very low and concentrated at the beginning of 
the season. The summary of the R2, RMSE, and MAE 
for three test subsets for the different NO3 and TP sea-
son models are shown in Fig. 2 (values and computa-
tion times are shown in Tables S2 and S3). For each 
drainage season, the random forest model had the best 
fit (R2 ~ 0.99 for NO3 and 0.96 for TP) with low com-
putation times and was therefore selected to fill in the 
missing values. Figure  3 shows the complete meas-
ured and modeled time series together with the input 
variables for the 2019–2020 and 2020–2021 seasons 
(seasons 2017–2018 and 2018–2019 are in Fig. S3). 
Random forest gave consistently very good results for 
each seasons’ model, while other algorithms showed 
larger differences in performance from season to sea-
son. Following random forest, k-nearest neighbor, and 
M5 Rules had a good performance for all seasons’ 
(R2 ~ 0.84 and 0.81 for TP and 0.73 and 0.92 for NO3, 
respectively), yet they had poorer results for TP in the 
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2019–2020 season (R2 ~ 0.59 and 0.65, respectively). 
M5 Rules gave, for little extra computation time, a 
very good performance in the all seasons’ model and 
has the advantage that the output of the model are 
explicit rules that could be interpreted. However, as 

the problem was complex, more than 190 rules were 
obtained, which makes interpretation very difficult. 
Artificial neural networks came in fourth place with a 
lower performance in the all seasons’ model (R2 ~ 0.67 
for NO3 and 0.50 for TP). Sequential minimal 

Fig. 2   Performance of the different machine learning models 
in the test set. Average of R2, MAE, and RMSE for the 3 seeds 
used. The standard deviation is shown with the error bars. 
Models: artificial neural networks (ANNs), K-nearest neigh-

bor (K-NN), M5 Rules (M5R), random forest (RF), sequen-
tial minimal optimization (SMO), Zero Rules (ZR). MAE and 
RMSE were normalized to facilitate comparison
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Fig. 3   Measured and modeled time series for the 2019–2020 
and 2020–2021 season. The nutrient measured data was plot-
ted thicker to see it behind the model (random forest). Gaps in 

the data are indicated with a dashed box. The groundwater lev-
els are relative to the ground level
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optimization obtained even lower results than arti-
ficial neural networks (R2 ~ 0.38 NO3 and 0.19 TP) 
and the longer times needed to build and validate the 
model are a mayor disadvantage. For example, for the 
all seasons’ model, the sequential minimal optimiza-
tion model took 46 h computing time to train and test 
the NO3 data series while random forest took only 
2 min. Multivariable linear regression offers the ben-
efit of having an explicit equation as output, but the 
trade-off is a lower performance (R2 ~ 0.39 for NO3 
and 0.21 for TP; MAE > mean). Only in 2018 when 
NO3 was strongly correlated to discharge and ground-
water levels the results for the multivariable linear 
regression were very good (R2 ~ 0.89). Nevertheless, 
the correlation was almost the same as doing a simple 
one variable linear regression with the discharge and 
this relationship was not maintained through the years 
(Fig. S2).

Future predictions

First, we compared the predictive performance 
between the 2019–2020 measured data and the pre-
diction of the same season using the 2018–2019 and 
the all seasons’ random forest models (Fig.  4). This 
prediction illustrates the random forest performance 
outside the training period without system changes 
(besides manure surplus). The R2 using the TP pre-
dictive 2018–2019 model was only 0.41 (MAE 0.02 
and RMSE 0.04), fewer and lower TP peaks were 
obtained but the baseline concentrations were repro-
duced, except for some baseline overestimations in 
March. For NO3, the largest difference in concen-
trations was from the end of November to January, 
when there is an increase in the measured NO3 val-
ues that were not predicted by the model, still the R2 
was 0.75 (MAE 3.02 and RMSE 4.40), as the model 

Fig. 4   Prediction of 2019–2020 measured concentrations using 2018–2019 and 2017–2021 models. Concentrations’ time series 
(top), density distribution of values (middle), and box plots of the error (measured–modeled) (bottom)
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performs well outside this window. The NO3 load 
using 2018–2019 model was 723 kg while the meas-
ured load was 885 kg. TP exported using 2018–2019 
model was 4.1  kg while the measured load was 
3.3 kg.

Second, we compared the predictive performance 
between the 2020–2021 measurements and the pre-
diction of the same season using the 2019–2020 and 
the all seasons’ random forest models (Fig.  5). The 
predictions represent how suitable is random forest 
to capture system changes (water conservation). The 
performance of the 2019–2020 model TP predictions 
was poor (0.09 R2, 0.034 MAE, and 0.057 RMSE) 
while the all seasons’ model performed well (0.96 R2, 
0.001 MAE, and 0.003 RMSE). In the case of NO3, 
the R2 of the 2019–2020 model with the measured 
values was 0.44 (4.53 MAE and 5.15 RMSE) while 

with the all seasons’ model it was 0.99 (0.050 MAE 
and 0.070 RMSE). The distribution of the error of 
the all seasons’ model was always around zero and 
the differences with the measurements were mainly 
in the outliers. Despite the very good results for gap-
filling within the training period, the predictive per-
formance of random forest outside the training period 
was poor. The total TP load using the 2019–2020 
model predictions was 5.57  kg while the measured 
load was 6.55 kg. On the other hand, the 2019–2020 
model overestimated the NO3 load at 760  kg, while 
the measured load was 534 kg.

During the first three seasons the total nutrient 
loads appears to have increased with the rainfall. A 
change in this trend is observed for the last season 
after the water conservation measures were imple-
mented. Although the predicted loads differ from the 

Fig. 5   Prediction of 2020–2021 concentrations using 2019–2020 and 2017–2021 model. Concentrations’ time series (top), density 
distribution of values (middle), and box plots of the error (measured–modeled) (bottom)
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measured loads for 2020–2021, the change in trend is 
to some extent captured by the model (Fig.  6). The 
dryer years with lower leaching may have resulted in 
accumulation of nutrients in the topsoil that were later 
released in the wetter years. All measured variables 
had between four and a hundred times the importance 
of the random variable introduced (Fig. 7). Turbidity 
had the highest feature importance in most models 
(except the 2018–219 and 2020–2021 NO3 models).

Discussion

Using machine learning models to fill in missing data

The first objective of this study was to evaluate six 
different machine learning models for gap-filling 
in a high-frequency NO3 and TP concentration 
time series. Random forest had the best perfor-
mance for both NO3 and TP with a constantly high 
R2 (> 0.92) and low MAE and RMSE for every ran-
domly selected testing set and application period. 
The short computing times are another advantage for 
using random forest for gap filling. The random forest 
gap-filling model could reproduce short-term trends 
in the time series as the TP peaks after rain events, 
NO3 dilution after rain events, and NO3increase with 
increase in the groundwater levels. The good results 
of the 2017–2021 model show that the random 

forest algorithm can also largely incorporate system 
changes within the training period, such as the intro-
duction of water conservation measures and differ-
ent soil nutrient surpluses. We observed that the NO3 
models performed systematically slightly better than 
the TP models. This may be caused by the larger 
proportion of missing values in our TP time series. 
Kang et  al. (2019) and Zhang and Thorburn (2022) 
also reported a reduction in model performance when 
the amount of missing data is larger as this reduces 
the size of the training set. Another reason could be 
the relatively smooth behavior of NO3 concentration 
dynamics compared to the spikier TP patterns.

Other comparative studies have also found ran-
dom forest to perform better than linear regression 
and other machine learning algorithms in problems 
related to water quality (Castrillo & García, 2020; 
Ha et al., 2020; Shen et al., 2020; Visser et al., 2022). 
Methods such as artificial neural networks that here 
had a low performance have shown very good results 
in other studies (Astuti et al., 2020; Chen et al., 2020; 
Daliakopoulos & Ioannis, 2016; Dastorani et al., 2010; 
Kim et  al.,  2020; Najah et  al.,  2009, 2013). Never-
theless, in other comparative studies, they have also 
underperformed random forest (Bedi et  al.,  2020; 
Chen et al., 2020; Kim et al., 2020; Qiao et al., 2021; 
Visser et al., 2022). The low performance of multivar-
iable linear regression can be explained by the nonlin-
ear relationships between hydrological variables and 

Fig. 6   Total loads of NO3 
and TP per season against 
the seasonal precipitation 
during drainage period. The 
predicted loads for the last 
seasons with the 2018–2019 
and 2019–2020 model are 
included in gray
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concentrations. Multivariable linear regression has 
shown low performance in other nonlinear problems 
such as epidemiological studies (Shah et  al.,  2014). 
As there is no one-fits-all model, we recommend the 
used approach of evaluating different algorithms and 
seasonal performance to select the most robust model.

Conventional approaches for dealing with miss-
ing data included not considering the missing data or 
substituting the missing data with the mean (Tyralis 
& Papacharalampous, 2017). Not including the miss-
ing data makes calculations of total annual loads 
uncertain, especially because short, extreme rain 
events can account for a large portion of the yearly 
nutrient load export (Rozemeijer & Van der Velde, 
2014). Substituting the missing data with the mean 
was done as a benchmark (Zero Rules model) and it 
underperformed all other methods having the high-
est MAE and RMSE. It has been already shown that 
statistical gap filling methods usually underperform 
machine learning methods (Zhang & Thorburn, 
2022). Another gap-filling method includes step-
wise linear regression; this approach has exhibited 

a good treatment of the missing data (Rozemeijer 
et  al. (2010a, b), R2 0.74), but it requires a more a 
complex and time-consuming analysis of the time 
series than machine learning models as random for-
est. In our previous publication (Barcala et al., 2020), 
TP was correlated with NO3 for gap-filling in the 
2018–2019 season; this lead to a lower load estima-
tions, 0.96 kg for TP and 282 kg for NO3 compared 
with loads obtained with the new method, 1.33  kg 
for TP and 344 kg for NO3. Random forest, and other 
machine learning algorithms, are underused tools in 
water quality studies. We encourage their applica-
tion for gap-filling because of the good performance, 
short calculation times, and the availability of open 
source packages in R and user-friendly software like 
WEKA. Beside gap-filling, algorithms like random 
forest could also be useful for similar applications as 
real-time anomaly detection in sensors and autoana-
lyzers which could support system maintenance, for 
example by comparing the incoming data with one-
step ahead predictions to detect anomalies and trigger 
a warning message.

Fig. 7   Relative feature importance of the variables in the random forest models of the 2017–2021, 2018–2019, 2019–2020, and 
2020–2021 seasons
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Process interpretation

Our second objective was to show potential added 
value of machine learning to interpret underlying nutri-
ent transport processes. In most cases, the high number 
of trees in random forest models makes their physi-
cal interpretation difficult or impossible (Tyralis & 
Papacharalampous, 2019). The feature importance rep-
resents the information gain of including each variable 
in the model and could be indicative for the influence 
of variables on physical processes. As a first observa-
tion, all predictor variables in our data set contributed 
to the information gain for all drainage seasons. This 
was indicated by the higher relative feature importance 
values compared to the random variable introduced 
(Breiman, 2001; Doshi-Velez & Kim, 2017). There-
fore, it is not advised in this case to remove variables 
as all of them contributed to the prediction. Besides the 
feature importance, other approaches for process inter-
pretation include to evaluate the variable coefficients 
obtained by multivariable linear regression for process 
interpretation together with the results of “less trans-
parent” models as random forest (Visser et al., 2022). 
However, we would not recommend this approach 
for case studies as this one where results obtained 
with multivariate linear regression are poor. Instead, 
a similar sensitivity analysis to the variable feature 
importance can be done for other machine learning 
algorithms by training the models without one input 
variable at a time and evaluating the impact on the 
model’s results.

For NO3, the feature importance values were quite 
different between the 2019–2020 and 2020–2021 
seasons. In the 2019–2020 season, turbidity was the 
most important predictor, although groundwater lev-
els, evapotranspiration and discharge also contributed 
significantly. In the 2020–2021 season, groundwater 
levels, evapotranspiration, and discharge were the 
most important variables, but turbidity did not rank 
high. The connection between groundwater levels, 
discharge, and NO3 losses was described before by 
Rozemeijer and Broers (2007) and for this field site 
by Barcala et  al. (2020). With higher groundwa-
ter levels, a larger relative contribution of shallow 
NO3-rich groundwater flow routes (including tube 
drain discharge) towards surface water increases the 
NO3 concentrations while rain events dilute the con-
centrations. The NO3 concentrations reached up to 
25 mg/L NO3-N after an increase in the groundwater 

level in mid-November 2019. During the second 
part of the drainage season, the mineral N residue 
in the soil was depleted and the NO3 concentrations 
decrease to around 10 mg/L. Turbidity was also high 
in the second part of the season and splitting the trees 
by turbidity resulted in a positive information gain. In 
this case, the predictive power of turbidity does not 
seem to have a direct process-based explanation.

For TP, turbidity has the highest relative fea-
ture importance values in all models. This relation 
is directly linked to the role of sediment transport 
in TP concentration dynamics. As described by 
Barcala et al. (2020) and Baken et al. (2015), iron 
and phosphorus from groundwater form iron(hydr)
oxides which precipitate at the ditch bottom. Dur-
ing steady hydrological conditions, a P-rich sedi-
ment layer builds up. This sediment is transported 
during the next discharge event, causing a peak in 
both turbidity and TP. The data gaps in 2020–2021 
coincided with the highest turbidity peaks, and 
although it is likely, it is not possible to asses if 
there was an underestimation of TP peaks during 
this period. Furthermore, almost no high TP peaks 
were predicted with the 2019–2020 model when 
compared with the 2020–2021 measured series. 
Shen et  al. (2020) observed that high values were 
underestimated when using random forest to pre-
dict N and P concentrations in streams. The high 
skewness of the data was offered as explanation. 
Surprisingly, the TP export increased in the last 
season (2020–2021) despite the negative P surplus. 
The groundwater level increased in importance in 
the 2020–2021 model. The risk of mobilization of 
phosphate (and heavy metals) with the introduc-
tion of water conservation has been proposed the-
oretically before (Rozemeijer & Griffioen, 2004; 
Schoumans & Groenendijk, 2000), but to the best 
of our knowledge, it has not been directly measured 
yet. The topsoil had higher P and lower Al and Fe 
content, therefore watering the topsoil may have 
increased the risk of P leaching. In a recent data-
based model of NO3 leaching from agricultural 
soils across the Netherlands comparable trends 
were found (Spijker et al., 2021), the TP concentra-
tions were inversely correlated with NO3 emissions 
and TP was important for the prediction of NO3 
concentrations. They hypothesized that the high TP 
concentrations were a proxy for high groundwater 
levels (which were not included in that model), and 



	 Environ Monit Assess (2023) 195:892

1 3

892  Page 14 of 18

Vol:. (1234567890)

that areas with high groundwater levels had higher 
denitrification rates and therefore lower NO3 con-
centrations. In addition, Skidmore et al. (2022) has 
recently shown that extreme rain events increase 
the TP loads from agriculture.

Overall, machine learning can support process 
interpretation but justification of findings by other 
methods is needed, as the feature importance can be 
related to indirect links. Finally, turbidity was the 
variable that represented the largest information gain. 
Arriagada et al. (2021) and Fox et al. (2017) showed 
that random forest performance increased with the 
number of input variables used. Sensors are cheaper 
than autoanalyzers, require less maintenance and do 
not use reagents. The sensor data can then be trained 
to fill in data gaps in more complex equipment as 
TP autoanalyzers. This reason largely justify add-
ing sensors (such as for turbidity, conductivity, dis-
solved oxygen, or temperature) next to autoanalyzers 
at high-frequency monitoring stations. Moreover, if a 
TP autoanalyzer is removed, the combination of con-
tinued cheap sensor measurements, low-frequency 
conventional TP sampling, and the previously trained 
RF model could still produce accurate continuous TP 
concentration time series for the site.

Using machine models for forecasting

The third objective of this study was to show the 
limits of machine learning algorithms for making 
predictions outside the training period. As reported 
by Tyralis and Papacharalampous (2019), the most 
important limitation to data-based models is that they 
should not be generalized to predict new processes or 
changes in unaccounted variables that were not cov-
ered by the training data set. Moreover, Kang et  al. 
(2019), observed that interannual variations in nutri-
ent loads are caused by year-to-year system changes 
for example in manure application, crop rotation, 
and cultivated area percentage, which were not fully 
captured by their random forest models. One disad-
vantage of random forest is that a small change in 
the data set, caused for example by different manure 
surpluses, can lead to a large change in the structure 
of the optimal decision tree. Unfortunately, the soil 
nutrient surplus is calculated at the end of the season; 
therefore, it is not possible to use it as a predictor for 
result forecasting.

Although for each season the all seasons’ model 
and the model of the season had similar R2, MAE, 
and RMSE, the trees of each model were built split-
ting by different variables. This is why although the 
fitting was good for testing sets contained in the train-
ing period, it did not show such a good predictive per-
formance outside that period. For example, the high 
feature importance of the variable turbidity to pre-
dict NO3 in the 2019–2020 season is likely because 
during the first half of the season NO3 was high and 
turbidity was low while in the second half the oppo-
site happened, NO3 was low and turbidity was high. 
Whereas in the previous (2018–2019) season, this 
negative correlation did not occur the importance of 
turbidity in the prediction was low. When we see the 
feature importance of the variable turbidity for the 
whole period (2018–2021), it is larger than for the 
2018–2019 and 2020–2021 seasons. Therefore, the 
longer the data set used to build the model, the more 
likely it is that more processes that directly or indi-
rectly affect the prediction are taken into account.

Despite both predictive models underperform the 
gap-filling results, the 2018–2019 model does a bet-
ter job reproducing the 2019–2020 data than the 
2019–2020 for the 2020–2021 data. Especially the 
NO3 prediction with the 2019–2020 gives quite fair 
results. The relatively low N surplus in 2020–2021 
may explain the differences in NO3 loads obtained 
with the predictive model. In the last season, water 
retention measures were introduced and the nutrient 
N and P surpluses were lower, both changes were 
not directly introduced in the model as predictors 
but indirectly through the groundwater levels and the 
water quality data. Therefore, the groundwater level 
measurements were not enough to explain the system 
changes outside the training window. Nevertheless, 
the all seasons’ model performed very well for each 
of the individual seasons, including the 2020–2021 
season. Random forest can cover the system changes 
as long as they occur within the training period. The 
presented example shows that historical trends are 
no guarantee for future performance and that emerg-
ing processes may not be accurately predicted by the 
model. This highlights the need for cautious interpre-
tations of machine learning model predictions and for 
keeping the models up to date using longer data sets 
to improve the robustness of the models.

It is important to notice that the issue regarding the 
uncertainty of predictions outside the training period 
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is not likely to be caused by overfitting. Overfitting 
occurs when the performance of the model is good in 
the training set but not in the testing set. The training 
set was 60% of the data and it was randomly divided 
three times. The resulting random forest models were 
robust, with good results on all different validation 
sets and application periods. Moreover, we used a 
high-quality dataset with seven variables and about 
18,000 instances in the last two seasons. For further 
studies, we recommend evaluating ways to include 
low-frequency annual system changes in data-based 
models and quantifying the impact of the amount of 
missing data for the model performance.

Conclusions

•	 Random forest was the best out of six machine 
learning algorithms to fill in missing data, with an 
R2 higher than 0.92 for all test sets. Random forest 
could effectively reproduce nonlinear processes as 
concentration-discharge relationships and repre-
sent system changes that were considered in the 
training set.

•	 Machine learning may support process interpreta-
tion, but justification of findings by other methods 
is needed. Accounting for changes in the ground-
water levels was not enough to accurately predict 
system changes as the water conservation caused 
changes in the nutrient processes. After water 
conservation, higher groundwater levels resulted 
in more TP leaving the farm despite the negative 
P surplus and was represented by an increase of 
the relative feature importance of the groundwa-
ter level variable. This effect was likely related 
to higher desorption from the topsoil layers. For 
NO3, the variable feature importance values were 
caused by indirect links and were not directly 
related to processes.

•	 The incorporation of subsidiary sensors can pay-
off in monitoring stations with more sensitive 
autoanalyzers. Here, the turbidity showed the larg-
est information gain in predictions.

•	 Random forest predictions outside their training 
period can be uncertain. Keeping the machine 
learning models up to date with newly retrieved 
data increases the reliability of the predictions.

•	 Similar to gap-filling, random forest can be used 
for anomaly detection in monitoring stations.

The supplemental material includes the full data 
series, basic statistical exportation of the data series, 
model results including time calculations, plots of 
the modeled and measured data for 2017–2018 and 
2018–2019 seasons, plots of the cumulative load for 
each season, scatter plots of measured vs modeled 
data with Random Forest for every season.
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