

Deltares

Phosphate adsorption and diffusion model into ironcoated sand grains

7th IAHR Europe Congress, Athens, Greece

Victoria BARCALA Victoria.barcalapaolillo@Deltares.nl

Leonard OSTÉ

Thilo BEHRENDS

September 7th – 9th, 2022

Water quality in rivers, lakes, and transition waters in Europe

60% of surface waters in the EU have less than good ecological status (WFD)

Most nutrients come from agriculture

P is a nutrient & may trigger algae growth

(EEA, 2021)

Introduction

Methods

Results

Iron coated sand (ICS) filters

- Sustainable: by-product from drinking water
- <u>High P retention</u> capacity: adsorption potential of iron hydroxides
- Uses: around drains, out of drains box filter, in lakes, in retention basins outflow
- Has shown kinetic adsorption behavior
- Motivation: life-span, optimal flow velocity, stop-flow regime, maintenance

Construction filter around drainage

Drawing of filter in lake

Filter in the outflow of a water retention basin

Deltares

Introduction

Methods

Results

Laboratory setup

- Columns (3)
- Tracer tests and long term adsorption tests
- Constant flow, different velocities to evaluate kinetics
- Stop flow, to evaluate recovery time
- Microscopy (SEM-EDX) to see the inside of the grains

Methods

Results

Conclusions

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \frac{v \partial c}{\partial x} - f \frac{\rho k}{\theta} \frac{\partial c}{\partial t} - \frac{\rho \alpha}{\theta} (k(1-f)c - s)$$

Model

Advection-Dispersion Equation Adsorption in equilibrium Adsorption not in equilibrium *f* sites 1-*f* sites

- The advection-dispersion equation of a solute adsorbed though a porous medium (1D).
- Kinetics were represented in a 2-site model

Equilibrium sites (linear equilibrium, k) "fast adsorption"

First order kinetics (mass transfer coef, α) "slow adsorption".

• Static solution and parameter fit (D, α, k, f): CXTFIT module (Toride et al., 1995) in Stanmod (Simunek

et al., 1999; Van Genuchten et al., 2012), analytical solution.

• **Dynamic solution** ReacTran package in R (Soetaert and Petzoldt, 2020) using the previous parameters,

1D ode solver.

Deltares

Introduction

Methods

Results

5

- Good fitting of non-equilibrium model, K = 28 L/g-Fe
- Maximum adsorption = $K \cdot C (mg/L)$
- But, only 4% of sites are "fast" or in equilibrium
- <u>The "slow" adsorption has the largest P retention</u>

<u>capacity (96%)</u>, *α* = 1.56 10⁻⁴/h

Methods

Results

Conclusions

- Good fitting of non-equilibrium model, K = 28 L/g-Fe
- Maximum adsorption = K · C (mg/L)
- But, only 4% of sites are "fast" or in equilibrium
- The "slow" adsorption has the largest P retention capacity (96%), α = 1.56 10⁻⁴/h
- Lower velocities increase the P retention
- What if the flow stops?
- What does the "slow" and "fast" processes mean physically?

Deltares

Introduction

Methods

Kinetic model in column B 0.60 Non-kinetic 0.40 Measured C/Co **Kinetic** 0.20 0 250 500 750 Time [hours] 1000 0 Column B 5 cm/h vs Column A 3 cm/h 0.70 0.65 A B C/C_o 0.60 0.55 0.50 1600 1700 Time [hours] 1500 1800 Conclusions Results

7

- What if the flow stops?
- The model can represent different velocities and stop-flow
- When the flow stops it gives time for mass transfer
- Some of the fast adsorption capacity is "recovered"
 Good for maintenance.

Deltares

Introduction

Methods

Results

Conclusions

8

- What do the "slow" and "fast" processes mean physically?
- The P transport to the adsorption sites inside the coating is limited by the micro-porosity of the coating

(1-2 nm)

SEM-EDX image of ICS grain after adsorption

Deltares

Introduction

Methods

Iron-coated sand grain cross section

Conclusions

Conclusions

- The model can describe the mechanistic processes of P adsorption into ICS
- The model can be used for the design and operation of ICS filters
- ICS is a good and sustainable technology for natural systems with slow flow velocities
- Deltares and Arcadis are designing ICS filters

Introduction

Deltares

Methods

Results

Thanks you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 813438.

 \bowtie

Contact:

victoria.barcalapaolillo@deltares.nl

linkedin.com/in/maria-victoria-barcala-a336bb107